
MCN Spectra. 24 (1), Spring 1999

Implementing the CIDOC CRM with a relational database

Introduction

The CIDOC Conceptual Reference Model (CRM) is an object oriented semantic reference model for
cultural heritage information. Developed by the CIDOC Documentation Standards Group, it was launched
at the CIDOC Melbourne conference in 1998. The CRM it is intended primarily for use in the
development of mediation systems and other forms of data exchange, however, it can also be used as a
basis for designing a production database. Although the CRM is object oriented it can be implemented
quite easily using a relational database. Based on experience of Geneva's Musinfo project, this article is
intended to offer a brief survey of the major issues involved in implementing the object-oriented CIDOC
CRM using a standard relational database engine.

Reasons for using the CRM
The Musinfo project covers several institutions which are responsible for Geneva City's major cultural and
scientific collections: the Ethnography museum, the Museum of natural history, the Conservatory and
botanical gardens and the Museums of art and history. The inter disciplinary nature of the collections and
the desire to ensure a coherent path for future development were the principle motivations for adopting the
CIDOC CRM as the basis for the database schema.
• Unlike the CIMI Z39.50 profile, which is restricted to a limited subset common data elements, the

CIDOC CRM adopts a maximalist approach which aims to encompass the widest possible range of
information and to provide coherent and consistent ways of translating information between 'poorer'
and 'richer' schema. The semantic depth of the CRM facilitates the integration of information from
different sources and disciplines.

• Furthermore, the CRM is designed with evolution and extension in mind. The object oriented
mechanism of inheritance provides a convenient mechanism whereby a local database can adapt and
extend the model to encompass a greater or lesser degree of detail, while still maintaining
compatibility.

Reasons for using a relational database
The database engine chosen for the Musinfo project is Oracle. A number of factors led us to choose a
standard relational product rather than an object oriented database:

• Ready availability of technical expertise, both in house and externally
• Long term commercial stability of the software vendor
• Stability and reliability of the software products
• Wide range of third party development tools and accessory software available

Any large-scale IT project involves a number of risks, choosing a well established and familiar relational
database product was an obvious way to reduce those associated with the choice of software. However, it
did leave us with the problem of finding ways to implement the object oriented schema using relational
technology.

Social work
In spite of all these imminently sensible reasons for adopting an 'object-relational' approach, convincing
everyone involved still required some hard work and a lot of fast talking.

Users were won over by the application prototypes - the oo approach effectively removed a lot of
confusing clutter from their overloaded screens. Having been used to interpreting ambiguous 'generic'

 2

field names - intended to cover all options - and to ignoring inappropriate 'empty' fields - like the price of
a donation - users were pleasantly surprised to find that the information supplied on the new screen forms
adapted automatically to suit the class of information they were dealing with. Old habits die hard,
however, and the tendency to try to group disparate pieces of information into a catch all generic field was
difficult to overcome, both for users and analysts.

Developers were a much harder bunch to please, since the approach was unfamiliar and therefore not the
way we do things here. In the end, the argument which made the most impact was the simplicity of the
underlying oo data model. Initial attempts to design a multi-disciplinary relational database had resulted in
a ER model that had a charming Jackson-Pollock-freeway-interchange-and-gasworks look to it.

Object Oriented terminology and concepts
Bridging the gap between the relational and the object oriented approach was not as hard as we had
imagined. Fortunately, a lot of common ground exists between the object oriented world and the relational
approach. Much of the initial difficulty stems from questions of terminology. Simply knowing how to
translate from one jargon to the other can make things a lot easier. The list below, while riding rough-shod
over the sensibilities of data model purists, provides some equivalents:

oo Relational
class entity or table
instance row or record
attribute field or column
method stored procedure or function

Of course, not all oo concepts find direct equivalents in relational terminology, however, this is not
because they cannot be implemented but because they do not form a central part of the relational
approach. The most important of these for an understanding of the CRM are the notions of class hierarchy
and inheritance.

Relational models sometimes incorporate sub-typing, whereby a relational entity is subdivided into several
more specific entities: an entity describing Documents, for example, may be made up of sub-types Books,
Periodicals, Pamphlets, etc. This is generally a fairly ad hoc process in relational modelling and there are
no firm rules as to how sub-types are defined.

By contrast, sub-typing - specialisation in oo terminology - is fundamental to oo modelling. In the
example just used, Books, Periodicals and Pamphlets would be defined as specialisations of the class
Documents; inversely, Documents would be described as a generalisation or abstraction of the more
specialised classes. Any class may be specialised into sub classes, allowing a complex class hierarchy to
be constructed. This class hierarchy is often referred to as an Isa hierarchy - because a book is a
document, just as a car is a vehicle. Isa structures often form complex, multi-level hierarchies, starting
with extremely abstract and general classes, such as physical objects and animals, and descending through
successive levels to highly specific classes such as nitrogenous compounds and nematode worms. This
sort of multi-level hierarchy will be very familiar to anyone who has worked with a standard classification
thesaurus such as AAT. An oo model effectively allows the classification hierarchy to be built-in to the
data schema.

An oo class hierarchy is governed by the rules of inheritance. A subclass automatically acquires, or
inherits the attributes of the more general class to which it belongs. Thus, if a Document has the attribute
Title, all Books, Periodicals and Pamphlets will also automatically have a Title. Subclasses will usually
also have attributes of their own: a Book may have an ISBN number, a Periodical will have an Issue

 3

number, and so on. Attributes associated with higher level classes are inherited down through the
hierarchy so that successive specialisations become progressively more detailed.

Of course, the class hierarchy is not the end of the story. Classes on their own are just classification
categories into which instances of actual objects can be placed. Instances are, in effect, concrete examples
of classes: the Mona Lisa is an instance of the class Painting. A particular instance of a class will usually
have values for all its attributes. (In other words, the instances of a class are very much like the records of
a relational database.)

Methods and encapsulation
Methods and encapsulation are key concepts in the oo world. Methods are the processing aspects of
objects, which define their behaviour, whilst encapsulation basically means 'hide-all-the-messy-details'.
The CRM intentionally does not define methods for classes, since they tend to be application specific.
However, any implementation does obviously need to define object methods.

Application logic for Musinfo was programmed using PL/SQL, Oracle's procedural extension to SQL.
Like many modern programming languages, PL/SQL allows for the creation of 'packages', which are
essentially libraries of procedures and functions. Each package has an 'interface' section which allows
certain procedures and functions to be made visible whilst others are hidden from view - an important step
towards object encapsulation. Musinfo takes advantage of this possibility to create an interface section for
each branch of the class hierarchy. All major functions: creation, modification, destruction and recall, are
implemented as PL/SQL procedures. Hence the main application does not need to access the underlying
data tables directly. This approach effectively encapsulates data storage and manipulation and means that
the underlying relational structure is hidden from view. The end result behaves very much like an object
oriented database. Modifications to the relational tables need not have any repercussions on the
application programming, and users accessing the database see and manipulate classes of objects rather
than data tables.

Implementing the Isa hierarchy
Implementation of the Isa hierachy represents a major challenge since relational databases have no
comparable mechanism. However, the CRM does offer a way round this problem.

Apart from the actual class hierarchy, the CRM also specifies a parallel 'type' hierarchy. This type
hierarchy can be considered as a thesaurus which duplicates the structure of the class hierarchy. The 'has
type' attribute of each class allows instances to be associated with their corresponding type. If the type
hierarchy did no more than this, it would be entirely redundant. However, the type hierarchy may go into
finer levels of detail than are specified by the class hierarchy itself, thus allowing subtle distinctions to be
made which do not affect the underlying attributes for the class. Different sub-species of dogs, for
example might figure in the type hierarchy, but all be considered as instances of the general class of dogs.
The type hierarchy is one of the CRM mechanisms which allows fine detail to be expressed without
rendering the class hierarchy unnecessarily complicated.

The CRM type hierarchy can be adapted to provide the basic mechanism for implementing the class
hierarchy in a relational database. Musinfo uses a thesaurus structure like the CRM type hierarchy to
maintain a hierarchy of classes. Each class is defined by a term in the thesaurus. The standard Narrow
Term (NT) and Broader Term (BT) thesaurus relations are used to represent the oo concepts of
specialisation and generalisation and the 'has type' field of Musinfo database records is used to associate
each record with a particular class. Thesaurus scope notes provide a definition of each class and its
intended use. The class hierarchy can be consulted and manipulated using standard thesaurus management
software.

 4

Implementing inheritance
The second major difficulty involves implementing inheritance. This can be done in a number of ways.
The following examples are based on the conceptual model below which shows a simplified Isa hierarchy
from the CRM. An Actor is defined as any individual or a group which can be considered as an active
participant in an event. e.g. a government, a museum, the Bauhaus, Monet, the Barbizon school. All actors
have names, however, only an individual Person has a first-name, and only a Legal body may have a
constitution.

Actor
Name

Legal body
Constitution

Person
First name

Perhaps conceptually the most most satisfying approach and one which figures frequently in text books on
the subject, is the creation of a primary super class table for all common attributes of a class hierarchy
with additional tables used to define attributes needed for specialisation. The same primary key is used to
identify and group together the records which are necessary to constitute the object in question. The
NAME of an individual person, for example, would be stored in the actor table, whilst the first name
would be stored in the PERSON table. This structure is certainly very flexible, since additional
specialisations can be constructed simply by creating an appropriate table. However, join operations are
necessary every time an instance is consulted or updated which may lead to poor performance.

KEY_ACTOR = KEY_ACTORKEY_ACTOR = KEY_ACTOR

ACTOR
KEY_ACTOR CHAR(20)
NAME LONG

LEGAL_BODY
KEY_ACTOR CHAR(20)
CONSTITUTION LONG

PERSON
KEY_ACTOR CHAR(20)
FIRST_NAME LONG

A simple means of overcoming the performance handicap is to duplicate all necessary attributes within
each class. In the example below, the name attribute figures in each table. This approach certainly
accelerates reading from the database, but insertions and updating require as much processing power as
before, since the value of the name attribute has to be inserted into more than one table. The redundant
nature of the data also makes database management more complex.

 5

KEY_ACTOR = KEY_ACTORKEY_ACTOR = KEY_ACTOR

ACTOR
KEY_ACTOR CHAR(20)
NAME LONG

LEGAL_BODY
KEY_ACTOR CHAR(20)
NAME LONG
STATUS LONG

PERSON
KEY_ACTOR CHAR(20)
NAME LONG
FIRST_NAME LONG

The approach adopted by Musinfo uses a single table for each major branch of the CRM class hierarchy:
Physical Entity, Actor, Event, etc . These tables contain all the attributes needed for all the classes within
the hierarchy. A 'has type' field, containing a term from the type hierarchy thesaurus, is used to
differentiate the different classes. This approach allows for direct reading, insertion and updating of data
without the need for joins, and involves no redundant data. Administration of the database is also
simplified thanks to the limited number of data tables.

ACTOR

KEY_ACTOR CHAR(20)
HAS_TYPE CHAR(20)
NAME LONG
CONSTITUTION LONG
FIRST_NAME LONG

One potential disadvantage of this approach is inefficient use of storage space. Instances (records) of
'Person' will not use the constitution attribute, similarly, Legal bodies will not have a first name. These
null values inevitably take up unnecessary space. However, the amount of wasted space will depend on
the database engine being used. With Oracle, the problem is insignificant since null value columns occupy
only one byte of space in the data table. Indeed, trailing null columns (those at the end of a row) take up
no space at all.

Of course, the model shown here does nothing to clarify the nature of the class hierarchy and conceals
which attributes belong to which class. We have no way of reading this model to derive the existence of
'Legal body' and 'Person', nor the fact that Person has a first name and that Legal body does not. These
aspects of the CRM have to be embodied in the thesaurus which contains the class hierarchy and in the
application logic. It is the PL/SQL interface which 'knows' which attributes are appropriate for each class.
It is important to remember, though, that this is an physical implementation model and not a conceptual
schema. Semantic clarity is not a priority in this instance.

Conclusion
One major drawback to this approach is the 'hard wired' nature of class hierarchy logic which is built in to
the PL/SQL interface. Although extensions and minor revisions can be accommodated relatively easily,
any major overhaul of the class hierarchy would require the application logic to be entirely rewritten. We
hope that that the CRM will not be subjected to major revisions in the near future! This does mean,
however, that the approach adopted for Musinfo would be inappropriate in a context where conceptual
model was unstable and subject to frequent mutations.

 6

The approach described here has proved generally satisfactory. The end product works well and users are
pleased with the results. Project management has benefited as well since the use of standard commercial
software has ensured that we have had no difficulty in finding compatible development tools and
competent outside partners able to undertake development work.

Nick Crofts
Documentation Standards Group chair,
Project Manager, Musinfo.
Direction des Systèmes d'Information (DSI)
Geneva, Switzerland

More detailed information about the CRM is available from the CIDOC Documentation Standards
Group's web site: http://www.ville-ge.ch/musinfo/cidoc/oomodel.

The Musinfo project web site can be found at http://www.ville-ge.ch/musinfo.

