
OmNom

DM2E’s Ingestion Platform

CONCEPT FOR THE RDFIZATION FRAMEWORK

DEVELOPED BY WORK PACKAGE 2 OF DM2E

Revision Date Authors

1 30.09.2012 Konstantin Baierer

Contents

1 Introduction . 1
2 High Level overview of RDFization lifecycle 2

2.1 Preprocessing . 2
2.2 Schema Mapping . 4
2.3 Transformation . 4
2.4 Correction . 5
2.5 Linking . 6
2.6 Publishing . 6

2.6.1 Metadata Publishing . 6
2.6.2 Full Text Publishing . 6

2.7 Round-tripping Data . 7
3 OmNom architecture . 8

3.1 Backend . 8
3.1.1 Data Storage . 8
3.1.2 Data Model . 8
3.1.3 Data Flow Management . 9

Configuration . 9
Context, Buckets, BucketItems 10

3.2 Data Handling Components . 10
3.2.1 Loader . 11
3.2.2 Transformer . 12
3.2.3 Publisher . 12
3.2.4 Serializer . 12
3.2.5 Validator . 12
3.2.6 Splitter . 13
3.2.7 Linker . 13

3.3 Job Server and Message Queue . 13
3.3.1 Job Server . 14
3.3.2 Message Queue . 14

3.4 Frontend . 15
3.4.1 Technologies to use . 15
3.4.2 Views to implement . 16

4 Tools and Libraries to be integrated . 17
4.1 Loader . 17

4.1.1 RDF - RDF::Trine . 17
4.1.2 XML - LibXML . 18
4.1.3 CSV - Text::CSV . 18
4.1.4 MARC - MARC::Record and MARC::XML 18
4.1.5 MAB2 - MAB::Record . 19

4.2 Transformer . 19
4.2.1 XSLT - Saxon and LibXSLT . 19
4.2.2 MINT . 20

4.2.3 D2RQ . 20
4.2.4 R2R . 21
4.2.5 Culturegraph Metamorph and Metaflow 21
4.2.6 ClioPatria XMLRDF and Amalgame 22
4.2.7 jMet2Ont . 22
4.2.8 Javascript Engine - PhantomJS/V8 22

4.3 Linker . 23
4.3.1 Silk . 23
4.3.2 LIMES . 23

4.4 Splitter . 24
4.4.1 XML . 24
4.4.2 MAB2, MARC . 24
4.4.3 OAI-PMH - OAI::Harvester . 24

4.5 Validator . 24
4.5.1 XML Schema - LibXML Schema 24
4.5.2 Schematron - XSLT . 25

4.6 Publisher . 25
4.6.1 File System - local and SSH 25
4.6.2 HTTP . 26
4.6.3 E-Mail . 26
4.6.4 Distributed Version Control System - Git 26
4.6.5 Distributed File System - GridFS and HDFS 27

5 An OmNom Prototype . 27
5.1 Technology Stack . 27
5.2 Implemented functionality . 28

5.2.1 Backend . 28
5.2.2 Components . 29
5.2.3 Application Programming Interface 30
5.2.4 User Interface . 31

5.3 Missing functionality? . 36
5.3.1 Auth and Sync . 36
5.3.2 Editor components . 36
5.3.3 Data Model . 38

6 Relation to DOW, implementation timeline and testing framework . . . 39
6.1 Tasks in in WP2 of the DOW related to OmNom 39

Task 2.1 - Development of the RDFization Infrastructure for legacy
and existing content and metadata 39

Task 2.2 - Mapping into the Europeana Data Model 39
Task 2.3 - Contextualization and Interlinking 39
Task 2.4 - Development of Workflow Management Component . . . 39
Task 2.5 - User Interface for Creating Mapping, Interlinking Heuris-

tics and for Configuring the Workflow 40
6.2 RDFization architecture Task Force 41

First meeting of Architecture Task Force 41

Second meeting of Architecture Task Force 41
Third meeting of Architecture Task Force 41
Fourth meeting of Architecture Task Force 41

6.3 Milestones . 42
MS-01: Publication of initial report 42
MS-02: Prototype stable enough for demo 42
MS-03: Publication of first revised report 42
MS-04: Prototype is able to ingest UIB data 42
MS-05: Phasing out of prototype, implementation of The Real Thing 42
MS-06: OmNom fullfills indicator 3.4.5(2) 43
MS-07: Evaluation by ExLibris and WP2 leaders 43
MS-08: First Beta Release of the platform 43
MS-09: OmNom fullfills indicater 3.4.5(3) 43
MS-10: Release of OmNom v1.0 . 43
MS-11: Evaluation by ExLibris and WP2 leaders 43
MS-12: Release of OmNom v1.1 . 44

7 Conclusion . 45

1 Introduction

1 Introduction

The next step to achieve the goals set forth by the DOW must be the streamlin-
ing of the various steps of data transformation into one platform. As of month
6 of DM2E, the process is completely manual, i.e. it consists of many steps
with different tools, orchestrated by the user. This requires extensive knowl-
edge about data formats and transformation tools from the user and forces her
to keep track of the different states of data, so she is able to feed the correct
dataset to the next tool in the manual processing pipeline. An automatable so-
lution, as defined by Task 2.1 in the DM2E Description of Work would relieve
her from this error-prone tedium.

This document is an internal report based on practical research and the on-
going implementation of a prototype. This document is not a scientific article
ready for publishing in a Computer Science journal. This means that there are
strong over-simplifications to be found throughout the text and the terminol-
ogy might be idiosyncratic at times. While the author is willing to adjust the
wording and correct half-truths and errors in later revisions, please keep in
mind that the purpose of this report is to serve as the foundation for a spec-
ification and subsequent implementation and as a proposal as to how, when
and by whom the framework should be realized.

Many aspects of this work, esp. on practical aspects of tools like MINT and
R2R, can also be found in the DM2E Deliverable 2.1.

The report will first give a high-level overview of what this platform will have
to be able to do. Afterwards, an architecture is defined in terms of backend,
components, asynchronous functionality and user interface requirements. Ac-
tual instances of those components and libraries and tools to use them are
presented in the following section. Finally, a prototype developed by the au-
thor over the course of three weeks in Perl of how this system can actually be
coded is described.

The final section concerns itself with the project-related, hands-on aspects
of how OmNom relates to the Description of Work, how the development is
organized within WP2 and a list of dates when fixed milestones will have to be
reached.

As for the name: OmNomNom is an onomatopoeism widely used in Net Cul-
ture that is meant to resemble chewing sounds. As the author sees it, this
platform is for general data munging, so the name seems appropriate, plus it’s
short and catchy and easy to type. As with all other aspects of the system,
the author is more than happy to discuss alternative names if this one seems
inappropriate.

1

2 High Level overview of RDFization lifecycle

2 High Level overview of RDFization lifecycle

Before the concrete requirements for such a unified platform, One-Stop-Shop
for transforming noisy legacy data to rich and deeply structured DM2E-flavored
RDF - codename DM2E OmNom, can be described, a high level overview of the
different stages of the processing pipeline is presented in this section.

There have to be at least six different stages:

• Preprocessing
• Schema Mapping
• Transformation
• Correction
• Linking
• Publishing

These will be explained in the following sections. One important distinction
should be made right now: Mapping and Transformation are not the same
thing. Mapping refers to the high level task of translating one data format
("input format") to another data format ("output format". This has to be done
only once for every input/output format pair. The result of the mapping is also
referred to as "mapping file" or mapping for short. The process of applying a
mapping to input data in an input format produces output data in an output
format - this process is called transformation and has to be executed for every
set of input data.

2.1 Preprocessing

OmNom has to be able to handle at least three basic data formats: Hierarchical
(serialized as XML), Relational (serialized as a SQL database) and Graph-Based
(serialized in any standard RDF syntax). There is virtually no data in the do-
main DM2E is working on, that doesn’t adhere to one of these structures.
There are however cases, where the serialization differs, for example MAB-2 or
MARC, which are flat key-value text formats or CSV, which is a tabular format.
Those need to be transformed to an appropriate input format before the actual
transformation can begin. Schema Mapping

OmNom needs information on the structure of the input data. This includes

• Set of global elements and properties
• Rules of containment and linking of elements
• Data Types of elements and properties
• Value Ranges of elements and properties (including class information for

values representing resources rather than literals)

Based on these structural attributes of the input format, a mapping can be
constructed that allows automatic transformation of any input data in this
format to EDM+.

2

2 High Level overview of RDFization lifecycle

There are three levels of abstraction which could - in theory - be used for
creating mappings:

• Serialization (one mapping each for XML, SQL and RDF)
• Data format (one mapping for MARC-XML, one for TEI, one for ExLibris

Aleph’s Oracle database schema and one for every relevant RDF schema/ontology)
• Data Provider (one mapping for BBAW’s TEI flavor, one for UIB’s TEI flavor

. . .)

The serialization level is obviously to abstract - serialization is just the man-
ifestation of a data structure and therefore enforces little restriction on struc-
ture and semantics of the data encoded in it.

Given that data formats are standardized for this very purpose - interoper-
ability, it should be sufficient to create one mapping for every data format that
should be applicable to every set of input data in this format. This has many
advantages: First of all, mapping becomes work that has to be done only once
and be re-used not only by DM2E’s current data providers but future data
providers which provide data in the same format. Secondly, the mapping can
be done in a very formal way by strictly adhering to the specifications of the
data format.

The reality begs to differ however: Every producer of data in a standardized
data format runs into cases where the specifications are either to restrictive or
too unspecific for the modeling puposes of the producer. The former case leads
to "hacks", i.e. ways to circumvent this restriction by abusing elements for
unintended purposes, the latter case leads to de-facto standards ("flavors") that
might be consistent within the producer’s organization or even larger groups,
but requires "insider knowledge" not found in the specifications and yields
unpredictable results for other flavors of this data format.

Prominent examples for data formats that are standardized in excruciating
detail, but are used in practice in completely different ways are TEI and MARC.
TEI allows both literals and elements for many elements and enforces little
schematic limitations on properties (e.g. how to specify the <idno> element: Is
it’s @type property a string or a URL? Is the value a string or a URI?), while the
line-based nature of MARC forces data producers to repeat the same elements
with the same properties and opaquely store information in the order of those
elements (e.g. the first 856a field is the URL of the thumbnail, the second 856a
field is a link to Wikipedia) or in the value of the element itself (e.g. If 856a
begins with "DNB:", the string after "DNB:" is the URL to this publication’s
landing page at the German National Library portal).

For these reasons there will have to be provider-specific adaptions of format-
specific mappings. These can be made at three stages of processing:

• Preprocessing: The provider-specific adaptations are transformed to the
flavor of the input format the format-specific mapping is aware of

3

2 High Level overview of RDFization lifecycle

• Transformation: The mapping is produced specifically for the provider
• Correction: Provider-specific format adaptations are ignored during the

transformation process and only corrected afterwards (see section "Cor-
rection")

All three approaches have pros and cons. (1) is the best solution for a clean
workflow, as after it is done, no more adaptions to the transformation platform
have to be done. It will not work in many cases since there are no specifica-
tions for many of these adaptions in the data format specs, which led to the
data format adaptions by the providers in the first place. (2) is the most cum-
bersome, because it has to be done for every provider, which hinders re-use
and testing, but the mapping will be 100approach (3) means that the validity
of data produced by the transformation cannot be guaranteed anymore and
requires that provider’s strictly adhere to their own flavor of the input format
(i.e. every piece of input data must yield the same errors to be picked up in the
correction step), but allows, again, to use one and only one mapping for every
data file.

Leaving aside the difficulty of creating a correct mapping for the input data
formats, the task of mapping data formats is not part of OmNom, since this
is best left to tools that are created for this very purpose. OmNom will how-
ever integrate those tools in such a manner, that the user will notice as little
disruption from her workflow as possible.

While tools like MINT, Culturegraph Metamorph, Cliopatria XMLRDF or Freemarker
are often more than just a transformation engine with a thin API, but, as is the
case with MINT, a fully-featured IDE for the complete mapping/transformation
workflow. To make OmNom more versatile they will serve in two distinct func-
tions: As an editor component for writing the mappings and as transformation
engines. This has the advantage that one can use the editing features of a tool,
while being free to choose a transformation engine of their liking.

2.2 Schema Mapping

Data transformation is an iterative process:
Create or improve mapping Transform data using this mapping Repeat until

results are good enough
To make this development cycle easier, OmNom should offer capabilities to

automate the transformation and result checking steps as much as possible
and offer an integrated way to both edit and validate the mapping.

MINT includes all these features in a user-friendly interface – there is no
User Interface for either D2R or R2R however.

2.3 Transformation

The central functionality of OmNom will be the actual transformation from
whatever input format the data providers use to EDM+, an extension of the

4

2 High Level overview of RDFization lifecycle

Europeana Data Model (EDM). The choice of transformation engine coincides
with the type of mapping. As there are three types of serializations OmNom
will support, there will be at least three types of transformation engines (see
table 1).

Table 1: Mapping tools and transformation engines for OmNom’s formats
Serialization Mapping Tool Transformation Engine Used by XML MINT XSLT
Processor UIB, BBAW, NLI RDF Manual/Custom R2R MPIWG SQL database
Manual D2R SBB

For XML-based data formats, the MINT tool will be integrated into OmNom.
MINT is an integrated web-based platform for mapping XML formats to other
XML formats, creating XSLT stylesheets in the process, which can be either
used within the MINT platform or exported for use in other environments. For
the actual transformation process, only this XSLT stylesheet is necessary and
has to be made available to OmNom. A tight integration of the authentication
and data management features of MINT and OmNom will be targeted.

For transformations from RDF or from RDB the input data is transformed
using the tools R2R and D2R. Both are sophisticated tools that require a config-
uration file in RDF TURTLE syntax as the mapping. The transformation is then
executed via a command line script or by using the Java API directly. An editor
component that helps with writing the rules doesn’t exist and it should ar-
guably be created, with the minimum features being: well-formed-ness check
and schema validation.

2.4 Correction

This step shouldn’t be necessary in theory, but is in practice and as such a
crutch to be dropped in either before, during or after the data transformation
stage to "massage" invalid or insufficiently structured data into something that
the next step within the processing pipeline can work with.

Correction as a task of it’s own should be avoided whenever possible. When-
ever recurring patterns of suboptimal data creation emerge, their causes should
be tracked ups and fixed as early in the processing stage as possible, which
means that the data provider’s should ensure that their input data adheres
to the specifications on which the mappings are based - and correct the data
upstream before they submit it to OmNom.

In many cases, the data isn’t really invalid but yields results that make the
subsequent steps much harder. The results of the Linking heuristics can be
much improved by ensuring that literal values follow a uniform syntax. For
this purpose, the correction might actually remove data or store contextual
objects as literal strings – which is contrary to what DM2E wants to achieve in
general but might actually improve Linking results in certain cases.

A good example why correction is necessary is the syntax of person names,
which varies widely across data providers and frequently even within a single
provider’s data. This might lead to first names and last names being swapped

5

2 High Level overview of RDFization lifecycle

or additional information being interpreted as part of the name. Solving prob-
lems like these require either very sophisticated and specially trained pattern
recognition algorithms or specialized heuristics for a small, but well-known set
of patterns.

2.5 Linking

owl:sameAs and whatnot
Linking means identifying URLs for resources within the input data

2.6 Publishing

There are two levels of publishing that need to be distinguished: Publication
of the more or less raw EDM RDF data (i.e. which is mostly metadata) and
publication of the content in such a way that tools, like the Pundit annota-
tion framework developed in WP3 can easily interact with the full texts of the
manuscript.

2.6.1 Metadata Publishing

• Dump into DM2E triplestore
• Dump into user specified triplestore
• Publish via SPARQL/Update
• Publish via general HTTP mechanism (POST or PUT file somewhere)
• Upload as RDF dump to some FTP
• Download RDF dump

2.6.2 Full Text Publishing

DM2E aims at handling metadata and manuscript contents within the same
framework. In accordance with the general shift from document-based data
to networks of inter-related chunks of information prevalent in the Semantic
Web community, the traditional dichotomy of content and metadata, i.e. dis-
tinct and self-contained, possibly non-digital units of information and meta-
data records describing them is being phased out in lieu of an information
graph that doesn’t distinguish between data and metadata anymore.

Consequently, OmNom should be able to handle not only the metadata of
manuscripts, but the contents, structure and micro-structure of texts, includ-
ing state-of-the-art NLP analyses of said contents, such as named entity recog-
nition and resolvement of anaphora.

The transformation of full texts to EDM+ has to be bijective and reversible,
meaning that the atoms that make up the text must be uniquely identifiable
using a URI, and the hierarchy and sequence of the original text has to be re-
constructible from the EDM+ graph structure. The specifics of how the chunks
of information can be retrieved using this URI are subject to debate – either the

6

2 High Level overview of RDFization lifecycle

providers set up a web service that uses a custom look-up database which ren-
ders the contents in a way accessible for the tools developed in WP3 or DM2E
takes a RESTful approach and turns the URIs into HTTP-GET-resolvable URLs,
to be handled directly using the Semantic Web stack deployed (i.e. the Linked
Data frontend to the triplestore). This might however prove a performance
burden since most triplestores aren’t fit to handle millions of very long literals.

2.7 Round-tripping Data

Should the data transformation to EDM+ be bijective, i.e. should the the in-
put data be reconstructable from the EDM+ version without information loss?
DM2E has been taking a strong stance against round-tripping capabilities of
the system, since the main goal of the project is to facilitate the dissemination
of metadata and content to enable innovative ways of working with manuscript
data, not to develop a data model that is capable of handling every last intri-
cacy of the various storage solutions used by the data providers. While this
is a wise and understandable constraint, the ingestion infrastructure should
not structurally prohibit possible future development towards round-tripping.
At the current project stage, the vast majority of input data to be ingested is
serialized in plain XML, the scenario where a data provider wants to trans-
form data in a legacy RDF format to EDM+ isn’t far-fetched however. And from
there, it is only a small conceptual step to round-tripping capabilities. If a
user of the platform is willing to walk that extra mile and implement not only a
mapping from their legacy data format to EDM+ but also a mapping to reverse
the process the system should reward her by offering to handle this reverse
mapping as well.

The baseline on the flexibility of the system is that input shouldn’t be re-
stricted to XML and output shouldn’t be restricted to EDM+.

7

3 OmNom architecture

3 OmNom architecture

3.1 Backend

The backend can be implemented using any technology, the only restrictions
are that the backend should be as performant as possible and support a
developer-friendly API. As the backend is mostly "glue code" that combines var-
ious existing data loading and transformation tools and libraries, the backend
components should be modelled with abstract interfaces, so that the imple-
mentations that connect to external tools can be exchanged without breaking
the functionality (i.e. using a different job server or a different RDF stack) and
the data flow should be flexible enough to accomodate data handling compo-
nents beyond those listed in the specifications at this time.

3.1.1 Data Storage

Data ingestion is obviously a data-intensive process which requires the storage
layer to be able to handle both very large binary blobs of data (e.g. data dumps
ready to be split up and transformed) and many small chunks of character data
(e.g. configuration files, temporary files during transformation, log files,). The
"many small files"-aspect is probably best handled by a DVCS repository and a
reasonable policy with the data providers on how changes are pushed/pulled
into the repo. Using a DVCS for text file management solves many problems
at once: Files are versioned, data integrity is guaranteed and data can be
accessed and shared quite easily as there are exhaustive APIs and UIs to DVCS.
For large files, DVCS aren’t practical however. The easiest possibility is to
prevent the users from storing actual data on the server, requiring them to
give a remote location at ingestion time from where the backend pulls the data
and optionally caches it locally for a limited period of time. The other extreme
would be a fully featured data store backed by a distributed file system such
as HDFS or GridFS. A good compromise would be to outsource the details of
storage and backups to a Cloud Service like Amazon S3 and concentrate on
Authentication/Authorization aspects and a solid API.

3.1.2 Data Model

A data type is a generic way of organizing information (Examples: XML, RDF,
CSV, MAB2, MARC21), backed by an implementation in software that has
functionality to access and store data in this structure (Examples: LibXML,
Jena, RDF::Trine, Syck, LibXSLT, Saxon) and handle serialization and de-
serialization to/from textual representations of this format (Examples: RDF
in TURTLE and RDF/XML or CSV with "comma" or "tab" as the separating
character). Data formats are data types with at least shallow semantics, that
is a schema against which incarnations of data in a data format can be val-
idated. Data formats also can be defined by inheritance from other formats,

8

3 OmNom architecture

allowing specialization. This way of distinguishing is fuzzy, as it makes mono-
hierarchical classification of certain formats impossible (e.g. MARC-XML could
be seen as a serialization of MARC21 and as an XML serialization; XSLT
stylesheets are declared in XML), but it makes sense in OmNom’s function-
ality as "glue code": The main reason for even trying to distinguish between
different levels of abstraction - data type, data type implementation, data for-
mat - is to make it easier for the consumer of the platform to define the data
flow for her needs as easily as possible.

If a user want’s to inject snippets of XML into a text file, she might not even
want to parse it, since there is no need to access individual nodes or run XPath
queries on it - so make it easy for her to store the XML as text. Another user
may need the complex features of XSLT 2.0, so she should be able to make
it clear to the system that Saxon is the only acceptable XSLT implementation
to be used for this specific step. Yet another user may want to handle TEI
files, which is an XML-based format with many XSD schemas for different
application profiles. This user, too, should be able to declare straightforward
that the format is TEI and, no matter the implementation, should be treated
and validated as such.

3.1.3 Data Flow Management

From a user perspective and from the perspective of a developer building on
top of the DM2E ingestion platform, the process is supposed to be a black box
for virtually all cases. The consumer sends the instructions for setting up the
processing pipeline and the means to get the input data to the backend and the
backend sets up the stage according to the instructions, runs the components
- feeding output and additional data to components "downstream" until there is
nothing left to do, then notifies the consumer of the results. There is a variety
of functionality contained within this short paragraph and the complexity is
augmented further by the multitude of data types, formats and flavors the
backend has to support.

Configuration

The instructions, the configuration of the pipeline, must contain all the in-
formation that is necessary to set up the chain of events. Apart from metadata
that is useful for fine-tuning the overall system, debugging and logging, there
has to be a list of components to run in sequence1and their individual con-
figuration. To make the system versatile, this configuration should be data
structure universally representable in all major programming languages, ide-
ally a JavaScript object that can be handled as a HashRef in Perl, a dictionnary
in Python, a HashMap in Java etc. The benefit of keeping the configuration so
simple is that it can easily serialized and deserialized and as such, already

9

3 OmNom architecture

manifests an API for the data flow component.

Context, Buckets, BucketItems

Those instructions also define how the context on which the components
are going to work is to be set up. In particular, this means that every com-
ponent has to specify with what kind of data serialization and implemtentaion
backends it is going to work. The context component then creates type- or
implementation-specific buckets for the plugins to store data in. The bucket
and bucket item metaphor offers several advantages over leaving the low-level
data handling up to the individual components. For starters, a lot of behaviour
can be stowed away in roles, interface or base classes and won’t need to be re-
implemented by components. Secondly, it offers a clean interface for different
components to access shared data, while keeping the data in memory. This
is especially important for large documents that would have to be serialized,
stored, retrieved and de-serialized for data sharing otherwise. Since bucket
items are named, the buckets can be accessed as a lookup table and as a
stack. As such, cómponents can work like traditional UNIX pipeline where only
the item on top is used as input and combine data items in arbitrarily complex
patterns by accessing them by name. Another use-case is for caching of data
retrieved from remote sites. Finally, encapsulating the actual data objects in a
BucketItem object allows tracking the provenance of data during the pipeline
lifetime: Which component created the data, which component manipulated it,
and when, and who initiated the run? This makes evaluation of the platform
usage easier and might later on even be stored as provenance information in
the DM2E triplestore, as soon as the EDM+ versioning and provenance mod-
elling is completed.

3.2 Data Handling Components

The data handling components are the core of the system and the least tightly
integrated parts at the same time. While they are classified into a number of
different classes, this distinction is largely arbitrary and serves more to make
to offer specific functionality and helper methods for certain types of plugins
by means of inheritance and role consumption, as well as for namespacing the
components for the consumer of the API.

All components must implement a work method that takes the context object
as an argument. They can specify any number of data types they are going to
work on (signalling to the context that the respective buckets have to be set
up). At construction time, attributes can bes set that define the behavior of
this instance of the component:

source to load data from into one of the buckets
1and possibly in parallel, see 3.3.1.

10

3 OmNom architecture

target to publish data to
pipeline for nested contexts

Depending on the programming languae used for the actual implementation
of the system, it might be worth considering if the interface of the component
can be declared in such a manner as to make it possible to instantiate the
components in the best suited programming language. The baseline should
be that a component must be instantiable from a simple, easily serializable
data structure such as JSON. However this still requires the framework to im-
plement RPC interfaces for different programming languages and a protocol
to mange those instances. It should however be considered if a more ver-
satile multi-language service framework could be re-used. A good choice is
Apache Thrift, a »software framework for scalable cross-language services de-
velopment«2, which has bindings to all major scripting languages (which are
easy to use), as well as C++ (which is fast) and Java (which is the enterprise
standard for most non-performance-critical applications and the langugage in
which most of the tools listed in 4 are implemented).

3.2.1 Loader

Loader components take external data and parse them into an in-memory
model that other plugins can work with. One thing to note here is that in-
memory doesn’t necessarily mean that all of the actual data is loaded into
memory. Many backends work on iterators/streaming mode rather than raw
data, which means that they fetch data from a filehandle, socket or similar on
demand. Another way to prevent having to load all data in to memory at this
stage are lazy loading, where the data is retrieved and parsed only when the
respective bucket item is accessed by other components.

The source property of the Loader component could be either a HTTP-resolvable
URL, a file path relative to the data backend (e.g. a path within a Git repository
or an ID within a distributed file system) or in specific cases the raw data itself.

It is important that the loaders only store an access object in the context that
allows the other components to access the data either by a simplified API for
common actions (e.g. toString) or by the implementation’s native methods
(e.g. RDF::Trine’s serialize_model_to_file()). The data object should be
the native unit of storage for the data structure at hand, e.g.:

XML Root element of DOM tree
RDF Model (Graph of graphs of triples)
CSV Row iterator of cell iterators
MAB MAB2 record
MARC MARC record

2http://thrift.apache.org/.

11

http://thrift.apache.org/

3 OmNom architecture

Whereever possible the actual data shouldn’t be loaded into memory until
absolutely necessary and even then only in a streaming fashion.

3.2.2 Transformer

Transformers are components that work on input items and create or modify
output items. In most cases they need detailled configuration, e.g. an XSLT
stylesheet loaded earlier by a loader plugin. In other cases the transforma-
tion is straightforward, e.g. transforming a MARC21 field bases serialization to
MARC-XML.

3.2.3 Publisher

Publisher components are responsible for storing data contained in the context
to external data data storage resource. In the most simple case, say a HTTP
PUT request, the plugin would take the output item from the TEXT bucket and
send it to the URL defined in the target attribute.

The most important Publisher components to be implemented seem to be for
Triplestores, SSH and HTTP requests.

A Triplestore publishing component would export the output model in the
RDF bucket to the triplestore (or the SPARQL/Update serialized data in the
TEXT item). A SSH publishing component can store data as files on a remote
system, given that the keys have been set up accordingly - this is probably the
easiest way to debug an ingestion run for human users. HTTP requests are
versatile in that they can be used to access any RESTful API to store data to -
which is probably the easiest way for external applications to interact with the
results.

However, as the data target for DM2E’s ingestion is still ill-defined at this
stage of the project, the semantics of the Publisher plugin aren’t clear yet ei-
ther.

3.2.4 Serializer

Serializers inherit from Transformer which the constraint that the output bucket
should be of type TEXT. This is a convenience class that makes it clear from the
namespace already that the output produced by this transformer is plain text
which can be printed to a filehandle, sent over HTTP or fed to a deserializer
without having to worry about the underlying implementation of the source
bucket.

3.2.5 Validator

Validator components are very similar to Transformaer components, though
they don’t necessarily have output. They use some validation information,
e.g. an XSD schema or Schematron rule file and check the input item against

12

3 OmNom architecture

this information. If the validation passes, the component is essentially a no-op,
apart from maybe providing log messages. If the validation fails, the workflow
should fail noisily and with log messages specifiying the exact validation errors
to help the user create valid EDM+ (or whatever the backend validates against).

3.2.6 Splitter

Splitter components are a subclass of the Loader component, that has a pipeline
attribute in addition to the source attribute. There purpose is to split up
multi-record source data into the indidual records and run a pipeline on those
items. The way this should be implemented is that the nested pipeline should
start with a Loader plugin with unspecified source attribute, which will be
sequentially set to the individual record.

There are various formats which can contain many records within a sin-
gle data source, e.g. OAI-PMH responses, MAB2 batch files, MARC21 batch
files. Some providers will want to provide their input data compressed as ZIP
archives as well for batch processing.

To prevent performance degradation for large input data files, the underly-
ing implementations should support a streaming interface, so that only those
records currently processed have to be kept in memory.

Splitter plugins should support a Job interface so many records can be pro-
cessed in parallel.

3.2.7 Linker

Linking is short for Link Discovery and means the (semi-)automatic discovery
of relationships between a source dataset (controlled by he user) and one or
more target datasets (somewhere in the Linked Data cloud

3.3 Job Server and Message Queue

The ingestion platform should be designed in such a way that functionality
is contained in loosely coupled components that do only one thing and one
thing right. This means that individual components shouldn’t need to know
anything about the context they’re run in, apart from a thin API to the data
storage layer (buckets and bucket items) and a message channel for logging
and message exchange.

Another important design decision is that the system should degrade grace-
fully: If a component fails, this mustn’t necessary mean that the whole inges-
tion run has failed - but if it does, it should do so as verbose and detailled as
possible to make debugging easier.

Finally, OmNom is a multi-user platform with every user potentially wanting
to ingest many records into the system at once. Were the system to be a
single-process server, a single stalled ingestion would block the whole system
for all users. If a new process is started for every user or – even worse – every

13

3 OmNom architecture

ingestion, performance would degrade fast, possibly crashing the system when
it runs out of ressources and opening a wide-open security hole.

To address all those issues, a job management component, as well as a
messaging system are required.

3.3.1 Job Server

A job server is software that starts instances of the ingestion backend as neces-
sary, limiting the number of processes globally, per-user or by some arbitrary
convention (e.g. to prevent hammering external servers used by the Linking
component). Every run of the backend is to be encapsulated into a job object
that contains attributes for

• the state of the procss (STARTED, WORKING, PAUSED, WAITING, STALLED,
FAILED, COMPLETE),
• the user who started the job,
• timestamps of state changes
• the initial configuration of the ingestion run
• logging messages

The job objects should be easy to persist in a database. The job server must
have an API to let external applications and users introspect jobs and change
their state.

Traditional job servers like Gearman can run jobs in three modes:3Blocking
(i.e. jobs aren’t parallelized), background (i.e all jobs are run in parallel) and
taskset mode. The latter means that multiple jobs are run in parallel but the
parent process waits until all of them are finished. This mechanism might be
leveraged to not only parallelize complete ingestion runs but individual com-
ponents. For example an ingestion configuration might want to load remote
data both from an OAI-PMH endpoint, a SPARQL endpoint and a lookup XML
document. All subsequent components require those data items, but the three
Loader components are independent of each other so it might speed things up
if they wouldn’t need to wait for each other. This is a low priority feature how-
ever since it adds a level of asynchronicity that could possibly make the system
hard to debug.

The job interface must however not be integrated directly into the context
and component objects. In other words: The basic implementation of the work-
flow should be blocking but designed in such a way, that a job interface can
re-implement the necessary parts for a non-blocking run.

3.3.2 Message Queue

Unless the components and the context they work on are implemented within
the same environment – which would break the principle of loosely coupling of

3Remember: Not a scientific article :-)

14

3 OmNom architecture

components – there needs to be communication between components and con-
text via some sort of protocol to signal state changes, log progress and possibly
demand feedback (e.g. for user interaction). Again, such a protocol could be
implemented from scratch on top of TCP or HTTP, which would not be a smart
move. The messaging system has to be fast, i.e. with as little protocol overhead
as possible, versatile enough to handle at least logging, component-context-
communication and inter-component-communication and flexible enough to
be applicable to future use-cases as well as changes of the underlying proto-
col.

A widely used possibility that should be evaluated is Apache RabbitMQ, a
Message Queue that can be adopted to use several usage patterns, is highly
performant and easy to intgrate.

It might even be worth considering to use the message queue as the protocol
layer of the job server, i.e. for sending configurations of components over the
network.

3.4 Frontend

Frontend development is either the easiest thing in the world (the hard work
is done by the backend anyway, right?) or the toughest part of every software
project (Usability, eh? Accessibility, huh? Responsiveness? Bling?) – depend-
ing on the perspective. The complete task 2.5 of DM2E’s DOW is dedicated
to the development of a clean user interface to the whole platform. While the
details of how exactly it should be implemented cannot be clear until the back-
end is running smoothly, some views must be implemented and we can take
an educated guess as to what technologies will be used for the UI and how the
user will interact with it.

3.4.1 Technologies to use

The user interface is bound to be web-based. A solution that builds on OS-
native applications just doesn’t make sense for what is basically a configura-
tion and job management tool.

Moreover, as the API of the backend is supposed to be HTTP-based, mak-
ing use of JSON at several points, using JavaScript for building the interface,
validating user input and communication with the backend seems the natural
choice. Even better yet: If the processing pipeline is indeed set up from com-
ponents that can transparently be created in several proramming languages,
it might be possible to re-use the OmNom Data Model directly in the fron-
tend, lifting the UI developers from the tedious and error-prone task of storing
data in the DOM or mapping the backend data model to the frontend data
model using a JS framework like Ext.JS or BackboneJS. While on the sub-
ject: It might even be worth to consider implementing the backend in Node.js,
which is both performant, asynchronous by nature and wouldn’t require any

15

3 OmNom architecture

backend-frontend-translation at all.
Apart from the scripting, standard WWW technologies like CSS and HTML

should be used.

3.4.2 Views to implement

User Preferences Let the user set preferences, like default settings for certain
attributes of the components

Component List List the available components, ready to be sorted and filtered
by arbitrary criteria

Configuration List List configurations that a user can re-use
File CRUD Let the user create/retrieve/update/delete data in the data storage
Pipeline Creator A view that combines a list of components, a list of configura-

tions and an empty list. The user can then add components to the empty
list which creates the configuration for that component. The same should
happen when the user adds a configuration, except that multiple conifu-
grations are added at once. The pipeline should pre visualizable, so the
user can be sure she has the workflow right before starting it. Starting
it should serialize the list to a JSOn structure, ready to be sent to the
backend and/or job API.

Pipeline Wizard A multi-form questionnarire for drilling down what a user wants
and then providing her with a pre-computed pipeline. For example, know-
ing that a data provider uses TEI and wants to ingest into the DM2E
triplestore, Loader, Transformer, Linker and Publisher can be set, leaving
to the user the task of adding a Transformation that addresses his data’s
specifics.

Job list List of jobs, filterable by user, state, priority. . .
Job Details Detail one particular job, list log messages, status, priority, dates

associated . . . Give user the possibility to change status
XML element chooser Display the hierarchy of elements of an XML document

as a tree and let the user select one

16

4 Tools and Libraries to be integrated

4 Tools and Libraries to be integrated

In this section, the tools and libraries with direct impact on the RDFization
process will be discussed and other projects that are not directly re-usable
but might serve as an inspirational input, will be briefly described. They are
broadly categorized by the component type they will be integrated as.

4.1 Loader

This section describes the data formats OmNom will have to be able to load.
After a description of the format itself, an example for a library to actually use
is given - the ones used in the prototype.

4.1.1 RDF - RDF::Trine

RDF (Resource Description Framework) is a way for structuring information
in graphs of resources that can be linked to data-typable literals and other
resources by URL-identifiable links. The goal of DM2E is to transform tabular,
flat and hierarchical bibliographic (meta)data formats into this graph struc-
ture, a specific subset thereof defined by the EDM+ schema to be exact. A
notworthy aspect is that provenance in DM2E (for tracking the origins of user-
generated content) is going to be implemented using Named Graphs, that is an
augmentation of the traditional Subject-Predicate-Object triple to a Subject-
Predicate-Object-Context quad.

The RDF loader must be able to parse from and serialize to the various forms
for storing triples/quads (RDF/XML, TURTLE, N-TRIPLES, N-QUADS). It must
support different storage backends, at least in-memory and using a SPARQL
endpoint using SPARQL/Update. It must support SPARQL SELECT and CON-
STRUCT queries for searching and constructing. An easy to use component
for simple (RDFS) reasoning would be a plus, though it isn’t strictly necessary,
since most simple reasoning (which is all that OmNom might need) can be
achieved by SPARQL CONSTRUCT queries with property paths.

RDF::Trine4 is a RDF framework for the Perl programming languages. It
includes components for parsing and serializing RDF in various formats, in-
terfaces to different triple stores and a SPARQL engine. Full Disclosure: The
author is a contributor to RDF::Trine and knows it fairly well and is therefore
inclined to use it. However, Jena5 and Sesame6 are the standard choice in the
Java world and have the additional advantage of being the frameworks used in
most RDF programming example code.

4https://metacpan.org/module/RDF::Trine.
5http://jena.apache.org/.
6http://www.openrdf.org/.

17

https://metacpan.org/module/RDF::Trine
http://jena.apache.org/
http://www.openrdf.org/

4 Tools and Libraries to be integrated

4.1.2 XML - LibXML

eXtensible Markup Language is a tree-based data structure and tree serializa-
tion format. With a degree of probability tantamount to certainty the reader of
this report is familiar enough with XML to spare her or him the specifics of the
format.

On the implementation side of things, it is important to differentiate between
parsing, serialization and tree traversal. Parsing a large XML file at once into
a tree structure has severe disadvantages in many cases. Therefore there are
tree parsers and streaming parsers, which handle opening and closing of ele-
ments as events, a specific parser can hook into. Tree traversal performance
can vary widely between implementations due to the underlying data structure
used, how aggressively memory is reserved etc.

XML functionality is often provided by XML frameworks that combine vari-
ous libraries for handling XML parsing, handling, XSL transformation, valida-
tion and more. One such framework is LibXML,7 originally developed within
the context of the Gnome Desktop Environment, but now widely used in other
contexts as well. LibXML is written in C with bindings for a variety of lan-
guages. It encompasses serializers, bulk and streaming parsers and an XSLT
1.0-compliant XSL processor (LibXML, see 4.2.1).

4.1.3 CSV - Text::CSV

CSV (Character Separated Values) are a way of serializing tabular data by
defining an ASCII character to serve as the field divider, the record being a
single newline. By convention, the separating character is , (COMMA) and
CSV the abbreviation for Comma Separated Values. Other common separa-
tors are \t (TAB) or | (BAR). The values of field can be optionally encased in
quotation marks.

While seemingly trivial to parse, there is a variety of places parsing can break,
most notably the handling of escaped characters. Therefore using a dedicated
library for parsing CSV is highly recommended. One such library is Text::CSV8,
written in Perl/C, that has been in development for 10+ years, handles all the
edge cases and is very fast.

4.1.4 MARC - MARC::Record and MARC::XML

MARC (MAchine Readable Cataloguing) is a bibliographic data exchange for-
mat widely used by libaries around the globe. It is a key-value based format,
with limited suppot for hierarchies (subfields) and a wide variety of semantics
attached to the fields. The most relevant dialects of MARC in the context of

7http://www.xmlsoft.org/.
8https://metacpan.org/module/Text::CSV.

18

http://www.xmlsoft.org/
https://metacpan.org/module/Text::CSV

4 Tools and Libraries to be integrated

DM2E are US-MARC and UNI-MARC. MARC can be serialized in a native for-
mat using lower ASCII for field, value and record separation, as well as in an
XML serialization.

Because MARC’s semantics relies on the position of characters in some fields
and the default character encoding predates the inception of Unicode by twenty
years, parsing MARC is non-trivial. MARC::Record9 and MARC::XML10 are Perl
libraries for handling MARC21 records in both it’s flat file orginial format and
the XML-based MARC-XML serialization. They have been in development for
around fifteen years, are used for libary automation and there is a mailing list
for Library-related Perl modules,11 where questions are answered in a timely
and helpful manner.

4.1.5 MAB2 - MAB::Record

MAB2 (Maschinelles Austauschformat für Bibliotheken) is Germany’s answer
to a bad data format: A worse data format but in German and only for Ger-
mans. As such, MAB2 brings the same disadvantages and parsing difficulties
as MARC but with German key names. As with MARC, there is a traditional
serialization and an XML variant, character encoding issues are as abound as
they are with MARC.

MAB::Record12 is a recent effort by SBB’s Johann Rolschewski to port the
MARC::Record API to MAB data semantics. While not yet published in the
CPAN, it is very usable and seems bug-free, apart from the usual text encoding
nuisances that afflict all text handling tools. MAB::Record can convert between
XML and traditional serialization.

4.2 Transformer

This section describes various data transformation tools relevant for DM2E.
Transformation is used in the broad sense of data format and serialization
conversion.

4.2.1 XSLT - Saxon and LibXSLT

XSL (eXtensible Stylesheet Language) is a functional programming language
that can transform XML to XML or text. XSL stylesheets is written in XML as
a set of templates that are applied to the input document or elements therein
by defining XPaths. XSL transformers (XSLT) supports the evaluation of func-
tions, which can be used to improve pattern matching, for string manipula-
tions or as bridge to external data. However, the number of pre-defined func-
tions in the XSLT ‘1.0 standard is very low. XSLT 2.0 is much more flexible

9htp://metacpan.org/module/MARC::Record.
10htp://metacpan.org/module/MARC::XML.
11http://perl4lib.perl.org/.
12https://github.com/jorol/MAB-Record.

19

htp://metacpan.org/module/MARC::Record
htp://metacpan.org/module/MARC::XML
http://perl4lib.perl.org/
https://github.com/jorol/MAB-Record

4 Tools and Libraries to be integrated

in this regard but the standard is fully implemented by only one vendor - who
coincidentally is also the main author of the specifications. Many XSL trans-
former allow the user to define her own functions and make them available to
stylesheet authors.

The aforementioned only XSLT 2.0-capabable XSL transformer is Saxon.13

Saxon is available for Java, has superior function support and allows meta-
functions such as splitting a source tree into subtrees (useful for splitting up
trees of individual records as e.g. in OAI-PMH into the records in a standard-
compliant way). Unfortunately, Saxon is proprietary, commercial software.
While it is also offered in a Home Edition, this version is functionally very
restricted, e.g. without support for custom functions. Where XSLT 2.0 support
is essential, Saxon must be usable nonetheless.

A very good v1.0-compatible XSL transformer is LibXSLT14 which shares a
development group with LibXML (see 4.1.2). It has support for custom func-
tions. It is written in C (is as such very fast) and has bindings for many script-
ing languages.

4.2.2 MINT

Mint will be the main tool for XML-to-RDF transformation. As XML is such a
widely used format and almost all traditional data structures can be serialized
in XML without information loss, the processing of XML is the most important
aspect of the platform. Mint is a Java-based application, consisting of a trans-
formation engine based on XSLT, a rich user interface written in Javascript
(Yahoo YUI specifically) and JSP and styled using CSS. Since MINT is used in
many projects, it has been heavily customized. There is even a Mobile Interface
that resembles an Android/iPhone App.15

OmNom considers MINT to be an advanced WYSIWYG editor for XSL trans-
formations with additional Linked Data features. As for the backend, only the
resulting XSLT stylesheet is relevant and ways to retrieve them will have to be
implemnted. The integration of the MINT user interface will be purely for user
convenience, i.e. to allow her to start a mapping editor session in MINT from
within the OmNom user interface or to create a new mapping from scratch by
using a loaded XML document as the canvas to work on.

4.2.3 D2RQ

D2RQ is a mapping language that allows accessing Relational Database Mange-
ment systems as Linked Data by translating RDF-based queries to SQL and
vice versa. The general procedure is to generate an initial set of mapping rules
by letting the D2R software introspect the database and the iteratively refine

13http://www.saxonica.com.
14http://xmlsoft.org/XSLT/.
15http://oreo.image.ece.ntua.gr:9990/partage/Login.action.

20

http://www.saxonica.com
http://xmlsoft.org/XSLT/
http://oreo.image.ece.ntua.gr:9990/partage/Login.action

4 Tools and Libraries to be integrated

this mapping to perfection. To grasp the changes of a new version of the map-
ping file, it has to be tested. This can be done programmatically, by running
unit tests with e.g. SPARQL queries, or manually, by browsing the results.
While the former approach is far superior, it requires a programmer and is
rather tedious and time-consuming. Therefore, a manual feedback possibil-
ity is what OmNom currently aims at. For this purposes, D2R Server can be
used which integrates both the mapping engine and a Linked Data frontend.
Users can edit their mapping file within OmNom and preview the results of
the current mapping using a customized D2R Server. If this proves unsuit-
able for performance reasons, it might be better to just use the D2RQ com-
mand line mapping tools and provide a native Linked Data frontend such as
RDF::LinkedData or Pubby.

4.2.4 R2R

R2R16 is a framework for mapping RDF vocabularies. It consists of a mapping
language that is similar to SPARQL. Mappings can be defined in this SPARQL
that declare rules on how to transform literals, resources or graph patterns in
the source to the desired output structure.

R2R is a much more powerful of the SPARQL CONSTRUCT query, which al-
lows to create new graphs by re-organizing the elements from a source pattern
in a new way. However, R2R is made specifically for this purpose, whereas
SPARQL CONSTRUCT is a very general query type. Advanced transformations
such as the ubiqiuituos problems of differing phrasings of names (e.g. John T.
Smith; Smith, John T.; Smith, John <author> . . .) can be solved by R2R in a very
expressive and still terse form. This is very important for good results in the
link discovery process (cf. 3.2.7).

R2R can also solve problems where record identity does not necessarily co-
incide with what EDM+ considers to be the ProvidedCHO. As long as there is
no support for FRBRizing entities in EDM+, there is bound to be lots of prop-
agation of predicate-object pairs throughout the graph (e.g. in the case where
a provider differentiates between manifestation and work in it’s interna;l data
store, they are likely to use the URL for the work as the edm:WebResource for
the work and all the manifestations. Using R2R for graph manipulations like
this makes this step easier and less error-prone than to force the providers to
flatten their data before ingestion.

4.2.5 Culturegraph Metamorph and Metaflow

Metamorph and Metaflow component of Linked-Open-Data-Service developed
by the German National Libary. Metamorph is a software for transforming bib-
liographic formats, such as MAB2, MARC21 and PICA. Metaflow is a the im-
plementation domain-specific scripting language for creating Metamorph data

16http://www4.wiwiss.fu-berlin.de/bizer/r2r/.

21

http://www4.wiwiss.fu-berlin.de/bizer/r2r/

4 Tools and Libraries to be integrated

flows. The framework is written in Java and heavily in development but con-
tacts between DM2E and Culturegraph have been established and a coopera-
tion is planned.

4.2.6 ClioPatria XMLRDF and Amalgame

XMLRDF and Amalgame are tools that fit within the ClioPatria semantic web
server developed by University of Amsterdam. XMLRDF is the component that
handles transformation from XML to RDF using a sophisticated rule engine.
Amalgame is a linking tool similar to Silk in functionality.

ClioPatria is written in SWI-Prolog which is unusual, but an understandable
choice, considering how closely a rule-based language like Prolog and a graph-
based structure like RDF are related. It is hard to interact with it on the
language level, a command-line based approach or interaction via a HTTP API
seems more feasible.

4.2.7 jMet2Ont

jMet2Ont17 is a very recent effort by Poznan Supercomputing and Networking
Center to create a XMl-to-RDF transformation engine. It is a unique approach
in that it handles transformation neither rule-based nor on pure syntactics,
but on ontology paths. JMet2Ont is written in Java and the transformation is
controlled using a XML file.

Right now, jMet2Ont is still in it’s infancy but it looks promising and DM2E
is in contact with the developers. A simple interface to jMet2Ont would be easy
to do and would increase the visibility of the tool which might in turn motivate
the creators to create an easier to use user interface.

4.2.8 Javascript Engine - PhantomJS/V8

Every component is backed by software. To adapt the software to the users
needs, configuration data needs to be given to the component who translates
it to a correct call of the software. This means that a user mustn’t only trans-
late her data transformation needs to the framework of a specific tool (e.g. a
MINT and then an XSL processor), but abstract one step further to the Om-
Nom framework. While this is in many cases even desirable so the casual
user is protected from the intricacies of the implementation, advanced users
may find it easier to "just hack" their desired transformations in a scripting
environment.

Javascript/ECMAscript has evolved from it’s early days as a simple sand-
boxed language for adding basic client-side scripting to WWW browsers to span
the breadth of areas that other scripting languages such as Perl, Python or
Ruby occupy already. Sophisticated DOM handling libraries such as jQuery

17http://fbc.pionier.net.pl/pro/jmet2ont/.

22

http://fbc.pionier.net.pl/pro/jmet2ont/

4 Tools and Libraries to be integrated

and underscore are arguably the most frequent and easiest form of XML ma-
nipulation in use today. Therefore, it would be helpful to integrate a Javascript
environment into the toolchain.

A conceivable setup would be PhantomJS (which is in essence a headless
WWW browser) with some helper libraries for different data formats.

4.3 Linker

4.3.1 Silk

Silk is a Java-based framework for aligning data sets in the Semantic Web.
The user defines a set of rules that define when two resources in different
data domains should be considered identical or at least sufficiently similar
to store a relation between the two (e.g. owl:sameAs). Another use-case is
turning literals into resources by doing complex searches for strings and re-
placing/augmenting the string versions with a link to the resource, e.g. replac-
ing the literal "London" with the URL http://geonames.org/place/london).
Silk’s strengths are it’s high performance (the process can be distributed across
multiple computers), the flexibility of the linking rule language and the config-
urable thresholds for linking results quality: Silk partitions the linking results
by how certain it is the results are correct. Some results are certainly correct,
some are probably correct, some might be correct, some could be, etc. It is up
to the user how to react to those uncertainties.

What Silk is lacking, is an easy-to-use and easy-to-integrate User Interface.
Silk is run by providing a configuration file that contains the linking rules,
the location of source, lookup and target datasets. For novice users, an editor
component that makes editing those configurations easier might be helpful
(e.g. XML highlighting, snippets, help), experienced users could just provide a
link to the configuration.

A thing to note about Silk is that it is best run in batch mode, while the
general approach of the components in OmNom is to handle one record at a
time. Therefore, Silk is probably best used as the last component in a pipeline
that starts with a Splitter componennt, i.e. for running on batches of MAB2 or
MARC records.

4.3.2 LIMES

LIMES (LInk discovery framework for MEtric Spaces)18 is a relatively new link
discovery framework similar to Silk in functionality, though with a different
approach to similarity compution. It can reduce the number of comparisons
drastically by determining a similarity threshold before running the actual
alignment and filtering out too distant elements, which would be noise oth-
erwise.

18http://aksw.org/projects/limes.

23

http://geonames.org/place/london
http://aksw.org/projects/limes

4 Tools and Libraries to be integrated

LIMES has a very user-friendly web interface and is well documented. While
using Silk is the more appropriate choice, because it has been around for
several years, is proven to be very performant and DM2E is proud to employ
one of the Silk creators, keeping a look at and maybe implement an interface
for LIMES seems reasonable, if for nothing else, then for it’s really impressing
web interface.19, which might not only serve as inspiration for a Silk interface
but for the workflow composer view described in section 3.4.2 and Figure 4.

4.4 Splitter

4.4.1 XML

If the case occurs that multiple records are stored in one XML document, the
simplest way is to make the user provide an XPath and compute the subtrees
using a simple tree traversal. Virtual all OAI-PMH harvesters – the most prob-
ably use case – have built-in support for splitting up the OAI-PMH responses
into records.

The natural choice would be to use XSLT for this and it is possible to split
up a document into subtrees and write them out to files in XSLT 2.0, but
this is only supported by Saxon and could be highly inefficient due to the I/O
overhead for XML documents with lots of records.

4.4.2 MAB2, MARC

Splitting batches of MAB2 or MARC records into individual records can either
be delegated to a library (both libraries mentioned in 4.1 support that) or the
record batches can be converted to XML and the resulting XML transformed to
individual records using the method mentioned in the previous section.

4.4.3 OAI-PMH - OAI::Harvester

OAI-PMH is a widely used metadata distribution protocol used in the GLAM
area and at least one of the data providers intends to ingest data via OAI-PMH
into DM2E. It is a HTTP- and XML-based protocol and while format-agnostic
in theory, it contains only flat Dublin Core in practice.

Net::OAI::Harvester20 is an actively developed OAI-PMH harvester written in
Perl.

4.5 Validator

4.5.1 XML Schema - LibXML Schema

XML Schema (XSD) is a language for defining how XML documents are struc-
tured, constraining element names, element order, element values, element
19http://limes.aksw.org/colanut/.
20https://metacpan.org/module/Net::OAI::Harvester.

24

http://limes.aksw.org/colanut/
https://metacpan.org/module/Net::OAI::Harvester

4 Tools and Libraries to be integrated

containment and so on. XSD is used for datatyping in RDF as well. Many
XML-based format define the specifics of their format in XSD, which makes it
easy to validate instances of data in such an XML format to be automatically
validated. MINT uses XSD for introspection for it’s XML handling, both on the
interface level (tree of elements) and the mapping level (required elements) and
as such, an EDM+ XML Schema will be implemented by NTUA in late 2012.
This schema could be re-used in OmNom for general validation if the outcome
of a transformation to EDM+ is a valid graph according to the constraints.

LibXML is again (see sections 4.1.2 and 4.2.1) the most straightforward so-
lution, offering basic XSD validaiton, which should be enough for OmNom’s
purposes.

4.5.2 Schematron - XSLT

Schematron is a rule-based language for validating the structural and syntac-
tical correctness of an XML document. Other than XML Schema, described
above, it is just a set of derived XSL stylesheets and is processed using an
XSL transformator. This means that there is a Schematron meta-stylesheet
which is compiled with a Scematron XML document that defines the con-
straints and assertions. The instance data is then transformed using this
derived XSL stylesheet and the result is another XML document, listing all the
broken rules. This is a much more usable approach for debugging XML doc-
ument transformation, because other than XSD it doesn’t break on the first
error and it can break very verbosely. The assertions defined in Schematron
are more flexible than those in XSD, too.

SBB has started a Schematron schema for EDM+, which could be used as a
second step or an alternative to XSD validation.

Since Schematron is just XSLT with a twist, the technologies listed in 4.2.1
suffice to use it.

4.6 Publisher

4.6.1 File System - local and SSH

The easiest way to store data has been the file system. The user defines a path
or a path pattern and the backend stores the data in files at the appropriate lo-
cation. Using SSH (Secure SHell), it is also possible to treat remote filesystems
like local filesystems, fully encrypted , provided an encryption details exchange
scheme has been set up beforehand.

The easiest solution to access SSH shares from an application is to mount
the remote host via SSHFS21 from outside the application beforehand. This
leaves the transportation and encryption layer to the operating system, making
file access transparent to the application.

21http://fuse.sourceforge.net/sshfs.html.

25

http://fuse.sourceforge.net/sshfs.html

4 Tools and Libraries to be integrated

4.6.2 HTTP

HTTP (Hyptertex transfer protocol) isn’t a storage engine, but a network proto-
col. However there are so many storage engines that expose an API via HTTP,
that a generic component implementing HTTP based data transfer is sensible.

The easiest form of transfer of large chunks of data via HTTP is a HTTP POST
with Content-Type text/www-form-urlencoded. This is analogous to submit-
ting an HTML form with a field of type textttfile. Other, more programming-
friendly APIs to store data based on HTTP are easy to implement or re-use
(most Content Management Systems offer such interfaces). This might be the
simplest solutions for data provider to review the results of their ingestion
workflows.

Virtually all programming languages have libraries for implementing HTTP
client and server functionality.

4.6.3 E-Mail

4.6.4 Distributed Version Control System - Git

A VCS is a repository for tracking the evolution of files, used in virtual every
software development project, but usable in different contexts. Examples for
classical VCS are CVS or Subversion. DVCS are the next-generation of VCS,
which don’t require a central repository server to be set up. Instead, every
developer can fork the repository, cloning all the files and the complete history.
Changes to the Repository can then be pushed, pulled and merged from/to any
of the forks. The most widely used DVCS are Git, Mercurial and Bazaar.

OmNom strives to use a DVCS for the storage of component configurations
because DVCS are proven to work for features which would otherwise have
to be error-pronely implemented by hand. Wheels not to re-invent include of
course versioning, authentication, file storage and data exchange.

Arguably, even manuscript raw and intermediate data could be stored in a
DVCS, though VCS in generally don’t handle very large repositories (>10GB)
and binary files (such as images) very well. Which DVCS to use is open to
debate, the author prefers Mercurial for being more light-weight and straight-
forward, others might prefer Git for it’s ubiqiuituousness and the multitude of
tools and libraries that exist for interacting with it.

There are libraries for programmatically interacting with Git repositories in
many languages. One especially straightforward to use is Git::Wrapper22 for
the Perl programming language, it’s API is just a thin wrapper around the
command line usage of the git(1) command.

22https://metacpan.org/module/Git::Wrapper.

26

https://metacpan.org/module/Git::Wrapper

5 An OmNom Prototype

4.6.5 Distributed File System - GridFS and HDFS

Distributed file systems are data storage engines that distribute the storage
across multiple computers. Similar to RAID, there are multiple reasons for
distributing file storage: to increase capacity, to improve reliablity by multi-
plexing content, to improve retrieval time by distributing the I/O overhead etc.

One area where distributed file systems could be used in OmNom are the
storage of large quantities of (temporary) data that is too big or too unstruc-
tured to be sensibly stored in a Version Control System. For instance, data
providers might prefer to send in their records in bulk as zipped archives or in
the original form of distribution, as an archive including thumbnail and hi-res
pictures of the manuscript pages. Another example are large lookup XML files
to be cached for later re-use, such as localization/internationalization data or
the record attachments used in TEI.

Examples of distributed file systems are GridFS,23 which is part of MongoDB
or Hadoop’s HDFS.24 Both can be used from a variety of scripting languages
and have been known to scale very well.

5 An OmNom Prototype

This section describes the prototype of the platform that has been developed
while writing this report. The prototype is, as the designation implies, not the
finished product. It is in fact, not even an alpha version of the product but
a set of tools that implement interfaces and interact in a manner similar to
that of the product to be produced later on. This has been rapidly prototyped
between 2012-09-04 and 2012-09-23 and as such is bound to contain not-
loosely coupled components, inconsistent naming, hard-coded data and tight
requirements on the environment. Though it has been successfully deployed
on Linux systems, the process is requires extensive knowledge of the inner
workings and dependencies and - as a final self-deprecating comment - docu-
mentation beyond this document, a few text files and some inline comments
sprinkled throughout the ≈ 3000 SLOC.

The following subsections outline it’s technological choices, define what’s
there and what isn’t and show the functionality using screenshots from the
prototype frontend.

5.1 Technology Stack

The backend is completely written in Perl, using the Moose metaobject frame-
work as the object system. Moose is a remarkably practical choice for very flex-
ible interfaces, because it has Roles, which can be used like a Java Interface,
but with added behavior. Roles can even be added at object instantiation time,

23http://www.mongodb.org/display/DOCS/GridFS+Specification.
24http://hadoop.apache.org/docs/hdfs/current.

27

http://www.mongodb.org/display/DOCS/GridFS+Specification
http://hadoop.apache.org/docs/hdfs/current

5 An OmNom Prototype

which makes this very flexible for different implementations of functionality
(e.g. adding asynchronicity to the context, replacing one XSLT backend with
another) without having to change a single line of code. Another great feature
of Moose is the type constraint and coercion system that allows one to use the
wonderful Throw any data structure at new and be given an instance pattern
without polymorphism and duplicated if-then-else-cascades all around.

The HTTP API is implemented on top of the Dancer Microframework, a mini-
malist but complete and easy-to-use Web framework. The API is an application,
based on the Plack server middleware, that can be deployed on a number of
performant servers. This is mentioned here just to make it clear that this is
a persistent application that is started but once and not for every request as
with CGI.

A frontend is implemented as a separate Dancer application, that accesses
the API and serves some content where that is sensible. The main user inter-
face logic is implemented in Javascript using the BackboneJS MVC framework.
The relevant models of the backend are implemented as BackboneJS models,
which are rendered using views. This makes it very simple to synchronize the
state of elements in the HTML DOM to the model they represent. Communica-
tion between the backend API and the frontend happens using JSON which is
very easy to do using jQuery’s AJAX functionality.

The data handling components are implemented in Perl as well. They virtu-
ally contain no functionality of their own but delegate the loading, transforma-
tion, splitting and so on to external modules from the CPAN. Since libraries,
archives and libray automation software vendors have a long tradition of us-
ing Perl for administrative tasks and as a scripting language. Because of that,
there is at least one CPAN modules for pretty much any metadata format used
within the framework, if not on the data format level, then on the serialization
level.

Jobs are handled by the Gearman Job Server, which starts ingestion runs
as necessary. Job data and session information are stored in a MongoDB
database - which is both fast and straightforward to use for JSON-structured
data.

5.2 Implemented functionality

In compliance with the overall structure, the prototype has been developed in
the areas backend, components, API and UI.

5.2.1 Backend

The backend is working mostly as it is supposed to: Contexts can be cre-
ated, with buckets for specific data types defined by the components. Per
default, calling the contexts’s work method will start the process, call the com-
ponents’ work method with the context as parameter in sequence and finish

28

5 An OmNom Prototype

when there is nothing left to do. Alternatively, at instantiation time of the con-
text, a HasJob trait can be added to the context which turns the run of the
work method into a job persistable in a database.

Since the prototype consists of four servers (MongoDB for session storage,
Gearman as the job server, a worker-spawning dummy script that actually
starts the jobs and a web server for the API and UI), there is a Bash script
omnomd that can start/stop/restart these servers individually or at once, e.g.
omnomd START to start the whole application
omnomd RESTART MONGODB to only restart MongoDB

5.2.2 Components

The loader components implemented can handle loading data from a string,
from a file path relative to a Git repository base or from a URI. Loader plu-
gins for the following data types exist (if differing, serializations are listed in
brackets):

TEXT
XML
RDF (RDF/XML, Turtle, NTriples, NQuads . . .)
MAB2 (MAB2, MAB2DIS, MAB-XML)
MARC21 (MARC21, MARC-XML)
XSLT
XSLT::FromMint This is special, because it loads the XSLT directly from a Mint

instance: The user provides Mint URI, login details and mappingID/uploadID
for the mapping and the plugin simulates a login and then a preview on
the selected mapping/upload, retrieves the XSLT and loads it.

The following splitters have been implemented:

MAB2 Splits up a batch of MAB2 records into individual records and runs
ingestion with every record as input

OAI-PMH Harvests an OAI-PMH repository and runs an ingestion with every
record as input

The following data munging components have been implemented:

Nop Does nothing for configurable amount of time (debugging)
XSLT XSLT transformer using LibXSLT (i.e. XSLT 1.0)
XSLT2 XSLT transformer using Saxon (i.e. XSLT 2.0)
MAB2XML transforms a MAB2 record to MAB-XML
XML2TEXT serializes an XML document
RDF2TEXT serializes an RDF model
Schematron Validates an XML document according to some rules defined in a

schematron document

29

5 An OmNom Prototype

JSXML run Javascript code on the DOM of an XML tree (proof-of-concept)

The following publishing components have been implemented:

LocalFile Store bucket item to a file on the (server-) local file system (debug-
ging)

HttpRequest Set URI, HTTP verb and headers and send the contents of the
bucket item as the HTTP body

HttpUpload Shortcut for sending the bucket item as form input with the bucket
item as a file field’s content

Git Store the contents of a bucket item as a file in a Git repository, then add
that change and commit it to the repo - making it available to others to
pull and clone.

5.2.3 Application Programming Interface

The API is a Dancer application that responds to HTTP requests to resources
beyond the /api path. The following HTTP actions are possible at this time:

GET /api/visualize?pipeline=... Visualize an ingestion configuration in
terms of data flow, data buckets and plugin sequence (c.f. Figure 6 and Fig-
ure 7)

GET /api/doc?module=... Get the documentation for a component, by re-
trieving the POD documentation of the corresponding perl module

GET /api/git/my/path/ List the files in the directory GITBASE/my/path where
GITBASE is the base directory of the server-side copy of a Git repository
for configurations, mappings etc.

GET /api/git/my/path/foo.xml Return the contents of the file GITBASE/my/path/foo.xml
where GITBASE is the base directory of the server-side copy of a Git repos-
itory for configurations, mappings etc.

GET /api/plugin Get a list of plugin names, their type (by means of the roles
they consume, such as Loader, Transformer and their attributes (by
means of metaobject introspection)

GET /api/job/list?status=... List all jobs, optionally filtered to list only
those with status status

GET /api/job/abcdefg01234 Return the details of the job with ID abcdefg01234
POST /api/job Post a new job by sending an array of component configura-

tions. Returns the ID of the job posted
POST /api/file Upload a file to the GridFS filesystem provided by MongoDB.

Useful for storing input data to a HTTP-resolvable URL without hassle.
Returns the URL of the file

GET /api/file/ List all the filenames in the GridFS filesystem.
GET /api/file/abcdefg01234 Retrieve the content of the file with ID abcdefg01234

from the GridFS filesystem.

30

5 An OmNom Prototype

There are actually some other API functions that aren’t listed here because
they are most likely going away in subsequent versions. The /api/file calls
aren’t necessary and probably just a maintainance burden. Providers should
be required to store the data that components need to retrieve by URL at a
HTTP-resolvable path or by some other means (e.g. pushing those files to their
copy of the Git repository and sending a pull request to the server-side Git
repo.

5.2.4 User Interface

The user interface is browser-based, consisting of a web server that serves pre-
generated content for some simple cases (such as the job listing and job details
page), as well as Javascript code, CSS and structural HTML.

The main functionality, i.e. the creation of ingestion workflows, is realized us-
ing a Javascript application which communicates with the API using AJAX/JSON.
The application is is based on the BackboneJS Javascript MVC framework,
which has a somewhat steep learning curve for the occasional jQuery pro-
grammer, but leveraging it’s semantics really pays off in the long run.

The state of the user front-end is probably best explained using some screen-
shots and descriptions.

Figure 1: List of jobs currently in queue

Figure 1 shows the list of jobs as a sortable table. Jobs are color-coded
according to their status. Green jobs have completed successfully, while red
jobs have failed. Yellow jobs are currently running.

31

5 An OmNom Prototype

Figure 2: Simple completed Job

Figure 3: Simple failed Job

32

5 An OmNom Prototype

Figure 2 and Figure 3 show the detailed job descriptions for a completed,
resp. failed job. Note that every job stores the arguments for setting up the
workflow and the logging messages that components emitted during the run.
This should make it easier for the experienced user to quickly spot at which
point the ingestion failed and why.

Figure 4: OmNom composer

Figure 4 is the heart of the User Interface. The canvas has three parts: A
section for a list of components to add to the pipeline (left-top), a list of recipes,
i.e. re-usable configurations to insert into the pipeline (left-bottom), and the
pipeline itself (middle column).

Every component and every recipe has both a help button and an add but-
ton. Clicking the help button should present the user with a concise summary
of how this component is to be used, which attributes it supports, which at-
tributes are required and other usage notes. The easiest solution is to just ex-
tract the documentation of the source code of the component, which yields for
example the page in Figure 5. Clicking the add button on a component deeply
copies the default configuration of a component and adds it to the pipeline.
Clicking the add button on a recipe does the same for every component within
the recipe.

Every component configuration in the pipeline view has four buttons: One
for moving the component one step ahead in the component sequence, one for
moving it one step behind, one for editing the attributes and one for removing
the configuration from the pipeline altogether. Editing means that the view for
the configuration being edited changes from a simple <div> to a <form>. For

33

5 An OmNom Prototype

Figure 5: Documentation of a component

34

5 An OmNom Prototype

fields that expect a file path, a list of files from the Git repository is provided
using the API.

The pipeline view itself has two buttons: One for running the pipeline as a
job and one for visualizing it. Clicking the former serializes the pipeline view
to a JSON structure and creates a job from that using the API and opens the
job details page for the newly started job in a new window. The visualization
button is useful for ensuring that one does really understand the data flow and
there are no accidental dead ends. Since access to buckets for input/output
is name-based, this can happen only too easily but is quickly spotted using
visualization.

For example in Figure 6, the following sequence is to be run:

1. Load MAB2 record, store in MAB/input
2. Transform MAB2 in MAB/input to MAB-XML in XML/output.
3. Serialize XML in XML/output to TEXT/output
4. Publish TEXT/output using a HttpRequest

Obviously, there are no wholes and typos in there. If there was a typo, say
XML/outptu instead of XML/output, this would show because there would be
two bucket items which are only connected to one component each, which is
unrealistic (Why would a component want to read from an empty bucket item?
Why would a component write to a bucket item no other component is going to
retrieve?).

Figure 6: Visualization of a simple pipeline

35

5 An OmNom Prototype

An example for a visualization of a more complex workflow is in Figure 7.
While tedious to explain in detail and visually overwhelming, it shows that the
visualization can handle arbitrarily complex data flows.

5.3 Missing functionality?

5.3.1 Auth and Sync

There is virtually no authentication/authorization mechanisms built into the
system yet, beyond the data storage layer, where Git handles it. Seeing as
DM2E is a Linked Data project, it would be a nice-to-have feature to support
Semantic Web technologies in this area as well, such as FOAF+SSL/WebID and
a RDF-based ACL system. But while this is probably wishful thinking, a tight
integration into the auth mechanisms of the supporting tools like MINT, D2RQ
and Silk are high priority. Ideally, the system should be single-sign-on: The
user logs into OmNom and can access his data space in MINT. This opens up
another open issue: Complex systems like MINT have their own data storage
system, which should be kept in sync with OmNom’s, again in the spirit of a
single-sign-on: If the user changes his mappings in MINT, the changes should
be reflected in a timely manner in OmNom and vice versa, without requiring
action on the user’s part.

User Authentication: Would be cool to do that using FOAF+SSL, RDF ACL
and so on, but yarr, well, it’s complicated.

5.3.2 Editor components

In the current form, the only way to interact with components is by providing
them with a configuration at the time the pipeline is created. Some of the items
of this configuration (i.e. some of the attributes of the component classes) can
easily be mapped to User Interface controls and widgeta. For instance, a field
representing a file within the Git Repository can be a dropdown list of file paths
and other constraints such as value ranges can be encoded in the component
class as annotation data and exported and visualized to the User Interface
(e.g. as value sliders). For other cases, more complex widgets might be worth
implementing, e.g. a widget for choosing an element from an XML tree – this is
necessary for proper interfacing with MINT as well as for splitting up XML files
into subtrees.

There are cases where the user has to use an external tool to sensibly use
a component. MINT is again such an example: A user might want to set
up an ingestion workflow that includes a component that references XSLT
from a MINT instance. Now, if this user wants to edit the XSLT, she has to
leave OmNom and switch to the MINT tool, which has it’s own data storage,
transformation and publishing components. After the user is done adjusting
her MINT mapings, the system has to sync the XSLT with MINT or – worse and
more unintiuitive yet – the user has to re-load the MINT data into OmNom.

36

5 An OmNom Prototype

Figure 7: Visualization of a more complex pipeline

37

5 An OmNom Prototype

To clarify: This is a problem of the architecture only insofar as the authen-
tication and data storage has to be exposed in such a way that it is easy to
synchronize or unify both with external tools. The main work is at the frontend
layer where users should be able to use external tools to create the configura-
tion of a backend component with as little hassle as possible. If a user wants
to select a MINT mapping within a transformation component, she should be
able to select one from a list and click a button to edit it in a new window.

Thankfully, NTUA as the creators of the MINT tool are part of the WP2 Ar-
chitecture Task Force and are actively developing ways to expose as much
of MINTs functionality via APIs. This will be subject of further discussions
(see 6.2).

5.3.3 Data Model

Model-View-Controller
OmNom follows the Model-View-Controller (MVC) paradigm. This means that

there is a clear separation between the data domain (Model), the User and
Application interface (View) and the business logic (Controller).

Model User A user is a human agent interacting with OmNom. Every Group
File Correction Plugin Transformation Profile View Transformation Selection
Wizard The Transformation Selection Wizard (TSW) is a multi-form question-
naire users may take to drill down their transformation profile needs in a num-
ber of steps. This view should be the first step Wrapping Functionality Authen-
tication and Authorization Plack::Middleware::Auth::WebID File Management -
Schema files - Mapping files - Should support - archives (ZIP, TARGZ) - HTTP
- FTP

Functionality by processing stage
Preprocessing - Maybe scripting support (Javascript e.g. which is relatively

safe) - Regular expressions?
Mapping

38

6 Relation to DOW, implementation timeline and testing framework

6 Relation to DOW, implementation timeline and testing
framework

This part of the report tries to turn the findings listen earlier into actionable
tasks. First, OmNom and WP2’s tasks are inter-related, then the organization
and preliminary results of the task force working on the issues OmNom tries
to solve is discussed. Finally, a set of milestones is produced that can be used
for testing and controlling.

6.1 Tasks in in WP2 of the DOW related to OmNom

This subsection is dedicated to contextualising the research into DM2E’s project
flow. OmNom is more than just a RDFization framework, but touches all areas
of Work Package 2 of DM2E. The first subseciton therefore walks through the
tasks listen in the for WP2 in the Description Of Work of DM2E and relates
them to sections

Task 2.1 - Development of the RDFization Infrastructure for legacy and existing
content and metadata

Sections: 2, 3, 4, 3.2, 5
Notes: RDFization is actually pretty easy, since virtually any data

structure can be expressed as a graph somehow. Therefore
the actual XY-to-RDF transformation isn’t the main focus of
this report but the fine-grained definition of somehow.

Task 2.2 - Mapping into the Europeana Data Model

Sections: 4, 4.2.2, 3.2.2
Notes: The actual mapping (in the sense of the distinction in 2 is not

OmNom’s concern, but the mapping results are and the inte-
gration of mapping tools like MINT is.

Task 2.3 - Contextualization and Interlinking

Sections: 3.2.7, 4.2.4
Notes: Contextualization should be part of the ingestion workflow, be-

cause there seems to be little reason from the user’s viewpoint
to not have that functionality as a pluggable component in the
general workflow.

Task 2.4 - Development of Workflow Management Component

Sections: 3.3.1, 3.3, 3.1, 5.2.1

39

6 Relation to DOW, implementation timeline and testing framework

Notes: This task is touched by both the backend that manages com-
ponents, context, buckets etc. and by the job interface aug-
menting the backend.

Task 2.5 - User Interface for Creating Mapping, Interlinking Heuristics and for
Configuring the Workflow

Sections: 3.4, 5, 5.2.4
Notes: A set of requirements for the user interface and the practical

findings from developing the prototype frontend are listed in
the report.

40

6 Relation to DOW, implementation timeline and testing framework

6.2 RDFization architecture Task Force

As of September 2012, Work Package 2 is focussing on two areas: The finaliza-
tion of the EDM+ data model and the development of the ingestion platform.
Task forces for the two areas have been organized. The Architecture Task Force
has the goal to unify the various tools in the platform described in this report.

First meeting of Architecture Task Force

Date 2012-09-24
Description A task force for creating the RDFization infrastructure is set

up. MAN will lead the development of the actual implementa-
tion. MPWIG will provide coding Know-How from past projects.
NTUA will be kept up-to-date at all times and will provide in-
terfaces to MINT. EXL will lead the task force until actual im-
plementation. A

Responsible EXL (Konstantin Baierer), MAN (Kai Eckert), MPIWG (Jorge
Urzua), NTUA (Nasos Drosopoulos, Kostas Pardalis, Fotis Xenikoudakis)

Second meeting of Architecture Task Force

Date 2012-10-08
Description A preliminary set of interface specifications for the individual

data handling components is ready, extending, clearifying and
formalising the elements in this report, esp. 3.2.

Responsible EXL, MAN, NTUA, MPIGW, SBB (Kilian Schmidtner)

Third meeting of Architecture Task Force

Date 2012-10-26
Description Last call before the Project meeting
Responsible EXL, MAN, NTUA, MPIGW, SBB

Fourth meeting of Architecture Task Force

Date 2012-10-30
Description At the Vienna All WP meeting
Responsible EXL, MAN, NTUA, MPIGW, SBB

41

6 Relation to DOW, implementation timeline and testing framework

6.3 Milestones

This section lists the most important milestones that the platform will reach
in the next 36 months, from the perspective of the author of this report. The
milestones are aligned with the work plan set forth by the Description of Works
as well as the contract ExLibris-Baierer.

MS-01: Publication of initial report

Date 2012-09-30
Description The first revision of this document is ready and sent out to the

DM2E coordinator, WP2 leader and ExLibris.
Responsible EXL (Konstantin Baierer)

MS-02: Prototype stable enough for demo

Date 2012-10-17
Description The prototype of OmNom discussed in 5 is stable enough for

a simple demonstation. It will be presented at ExLibris Ger-
many HQ, ideally including a live demo, using screenshots if
not feasible.

Responsible EXL (Konstantin Baierer)

MS-03: Publication of first revised report

Date 2012-10-31
Description All parties have been able to review the first revision of this

document. Feedback from all parties is integrated to create a
more coherent set of specifications

Responsible EXL (Konstantin Baierer)

MS-04: Prototype is able to ingest UIB data

Date 2012-11-15
Description The protype of OmNom has reached a level of stability that it

is able to process the data from UIB (TEI XML) from their base
format using the XSLT stylesheets pulled from MINT to EDM+.

Responsible EXL (Konstantin Baierer)

MS-05: Phasing out of prototype, implementation of The Real Thing

Date 2012-12-01
Description The prototype of OmNom is either replaced by a re-implementation

in Java or developed further as the actual platform. Devel-
opment will be distributed from now on, with MAN, NTUA,
MPIWG, EXL and SBB in the team.

42

6 Relation to DOW, implementation timeline and testing framework

Responsible EXL (Konstantin Baierer), MAN (Kai Eckert), MPIWG (Jorge
Urzua), NTUA (Nasos Drosopoulos, Kostas Pardalis, Fotis Xenikoudakis),
SBB (Kilian Schmidtner)

MS-06: OmNom fullfills indicator 3.4.5(2)

Date 2013-03-01
Description OmNom is able to handle the complete workflow for 3 of the

data providers
Responsible EXL (Konstantin Baierer), MAN (Kai Eckert), MPIWG (Jorge

Urzua), NTUA (Nasos Drosopoulos, Kostas Pardalis, Fotis Xenikoudakis),
SBB (Kilian Schmidtner)

MS-07: Evaluation by ExLibris and WP2 leaders

Date 2013-12-31
Description ExLibris and WP2 leaders will evaluate if the progress of the

development of the infrastructure is according to the plan as
defined by the contract ExLibris-Baierer.

Responsible Konstantin Baierer, Axel Kaschte, Stefan Gradmann, Chris
Bizer

MS-08: First Beta Release of the platform

Date 2013-09-01
Description –
Responsible MAN, EXL, NTUA, MPIGW, SBB

MS-09: OmNom fullfills indicater 3.4.5(3)

Date 2013-12-01
Description OmNom is able to handle the complete workflow for 7 of the

data providers
Responsible MAN, EXL, NTUA, MPIGW, SBB

MS-10: Release of OmNom v1.0

Date 2014-02-01
Description –
Responsible MAN, EXL, NTUA, MPIGW, SBB

MS-11: Evaluation by ExLibris and WP2 leaders

Date 2014-03-31

43

6 Relation to DOW, implementation timeline and testing framework

Description ExLibris and WP2 leaders will evaluate if the progress of the de-
velopment of the infrastructure is according to the plan as de-
fined by the contract ExLibris-Baierer. End of contract ExLibris-
Baierer.

Responsible Konstantin Baierer, Axel Kaschte, Stefan Gradmann, Chris
Bizer

MS-12: Release of OmNom v1.1

Date 2015-02-01
Description –
Responsible MAN, NTUA, MPIGW, SBB

44

7 Conclusion

7 Conclusion

This report tried to conceptualize how manuscript (meta-)data from the various
data providers to Europeana via DM2E is possible. From a general problema-
tization of the different steps and the requirements for the architecture of a
software allowing the automatization of these steps, we went to practical ex-
amples of tools and libraries that are more or less ready-made for doin these
steps. The section about the OmNom prototype showed that it is feasible to im-
plement an approximation of the final system in less than three weeks and that
the preliminary specificatin of the architecture, while still in flux, is evolving in
the right direction.

The final chapter turned the various bits and pieces of information, require-
ments and tools to use into tasks that are going to be done by people until
fixed dates.

However, this is far from a definitve plan, leave alone the directly imple-
mentable specification for a software system. OmNom might just be glue code
but it must handle such a mutlitude of cases and interact with such a large
number of systems and backends that no single person can create such spec-
ifications from scratch without making mistakes.

Therefore, the author hopes that this concept is the foundation for discus-
sion and that it can be improved by further discussions with ExLibris, the
DM2E project coordinator, the WP2 leader and the Architecture Task Force
to create a set of specifications and thereupon a framework that is robust,
versatile and user-friendly.

45

	Introduction
	High Level overview of RDFization lifecycle
	Preprocessing
	Schema Mapping
	Transformation
	Correction
	Linking
	Publishing
	Metadata Publishing
	Full Text Publishing

	Round-tripping Data

	OmNom architecture
	Backend
	Data Storage
	Data Model
	Data Flow Management
	Configuration
	Context, Buckets, BucketItems

	Data Handling Components
	Loader
	Transformer
	Publisher
	Serializer
	Validator
	Splitter
	Linker

	Job Server and Message Queue
	Job Server
	Message Queue

	Frontend
	Technologies to use
	Views to implement

	Tools and Libraries to be integrated
	Loader
	RDF - RDF::Trine
	XML - LibXML
	CSV - Text::CSV
	MARC - MARC::Record and MARC::XML
	MAB2 - MAB::Record

	Transformer
	XSLT - Saxon and LibXSLT
	MINT
	D2RQ
	R2R
	Culturegraph Metamorph and Metaflow
	ClioPatria XMLRDF and Amalgame
	jMet2Ont
	Javascript Engine - PhantomJS/V8

	Linker
	Silk
	LIMES

	Splitter
	XML
	MAB2, MARC
	OAI-PMH - OAI::Harvester

	Validator
	XML Schema - LibXML Schema
	Schematron - XSLT

	Publisher
	File System - local and SSH
	HTTP
	E-Mail
	Distributed Version Control System - Git
	Distributed File System - GridFS and HDFS

	An OmNom Prototype
	Technology Stack
	Implemented functionality
	Backend
	Components
	Application Programming Interface
	User Interface

	Missing functionality?
	Auth and Sync
	Editor components
	Data Model

	Relation to DOW, implementation timeline and testing framework
	Tasks in in WP2 of the DOW related to OmNom
	Task 2.1 - Development of the RDFization Infrastructure for legacy and existing content and metadata
	Task 2.2 - Mapping into the Europeana Data Model
	Task 2.3 - Contextualization and Interlinking
	Task 2.4 - Development of Workflow Management Component
	Task 2.5 - User Interface for Creating Mapping, Interlinking Heuristics and for Configuring the Workflow

	RDFization architecture Task Force
	First meeting of Architecture Task Force
	Second meeting of Architecture Task Force
	Third meeting of Architecture Task Force
	Fourth meeting of Architecture Task Force

	Milestones
	MS-01: Publication of initial report
	MS-02: Prototype stable enough for demo
	MS-03: Publication of first revised report
	MS-04: Prototype is able to ingest UIB data
	MS-05: Phasing out of prototype, implementation of The Real Thing
	MS-06: OmNom fullfills indicator 3.4.5(2)
	MS-07: Evaluation by ExLibris and WP2 leaders
	MS-08: First Beta Release of the platform
	MS-09: OmNom fullfills indicater 3.4.5(3)
	MS-10: Release of OmNom v1.0
	MS-11: Evaluation by ExLibris and WP2 leaders
	MS-12: Release of OmNom v1.1

	Conclusion

